

Information Security Knowledge Sharing

Do we have to reinvent the security wheel at every organization?

Dr. Stefan Fenz Vienna University of Technology Xylem Technologies

Numerous brilliant information security knowledge sources.

Bundesamt für Sicherheit in der Informationstechnik

Challenges

- InfoSec knowledge sources are fragmented, not machine-readable and difficult to share because of the broad range of InfoSec domains.
- The development of an effective and efficient information security program requires the involvement of stakeholders such as end-users and senior management.
- Only a few individuals per organization keep deeper knowledge about the final information security program.

Challenges

 As a result we reinvent the security wheel at every organization and invest too much time in gathering, understanding and applying InfoSec knowledge.

To address these problems we aim at a unified and machine-readable information security knowledge sharing approach, enabling users to collaboratively understand and extend the knowledge body.

The knowledge base

- Knowledge is stored in an OWL ontology
- Content
 - Threats, Vulnerabilities, Controls, Standard Controls (ISO, GSHB, etc.)

Example: Fire threat

- threat_canBeConsequenceOf_threat: UntrainedStaffMember
- threat_givesRiseTo_threat: Smoke
- threat_exploits_vulnerability: NoFireExtinguisher
- vulnerability_mitigatedBy_control: FireExtinguisherControl
- Implementation Rule: Section AND asset_contains_asset SOME FireExtinguisher
- control_correspondsTo_standardControl: A.9.1.4 Protecting against external and environmental threats

- Knowledge is machine-readable, based on common standards and thus we are able to...
 - do reasoning to create new facts based on existing facts (e.g., based on the fact that a fire extinguisher is located in a certain room the machine infers that certain controls are fulfilled)
 - Easily integrate the knowledge base with other knowledge sources (ontology import functionality)
 - Use standard editors, reasoners and storage solutions
 - Store the knowledge independent of the language
 - Use existing APIs to reuse the knowledge for risk and compliance management tools

Collaboration

- The knowledge base is not restricted to a certain organization.
- By a web-based editor knowledge is shared on a global level
- Three layers
 - Generic InfoSec knowledge: common threats (e.g., flood) and vulnerabilities
 - Domain-specific knowledge (e.g., vulnerabilities specific to wind power stations in the context of the energy production domain)
 - Organization-specific knowledge (e.g., vulnerabilities in legacy systems which are used by the own organization)

Collaboration

Organization-specific (only accessible by internal staff)

Domain-specific (accessible by trusted energy provider CISOs)

Generic (accessible by any trusted CISO)

Prototype

TU XYLEM TECHNOLOGIES

security ontology formalizing information security knowledge

You are signed out. | Sign In | Send feedback!

Home Threats Vulnerabilities Controls ISO 27001 Controls GSHB Controls Assets Category Notes and Discussions Change History Class Tree **Details for MalwareAffliction** ▲¢@× Create Delete Watch 🔻 Search: Type search string Definition 😑 💿 Threat 🗙 🖓 Label Malware Affliction LowLevelThreat TopLevelThreat 🗙 🗫 Comment Malware, short for malicious software, is software designed to secretly access a computer system without the owner's informed consent. The expression is a general term used by computer professionals to mean a variety of forms of hostile, intrusive, or annoying software or program code. Source: Wikipedia Individuals for LowLevelThreat - (2) (X) Search: Type search string Predecessor (?) Threat Name Threats AlternationOfSoftware Network Attack 🗶 🦕 🛉 Add new value BadServerConfiguration Untrained Personell X 🖓 Breakin ConfigurationError Successor 0 DefectiveDataMedia Threat Threats DenialOfServiceAttack 🗶 💫 Alternation of Software 🕂 Add new value ElectricalDisturbance ElevationOfPrivileges ErrorsInStandardSoftware FailureOfTSystems Exploits Vulnerability 0 Vulnerability Fire X 🔂 1 Lack of IT Training . FireFighting 💠 Add new value × P Insecure Operation of Mail Server Flood E × P Insufficient Training of Maintenance and Administration Staff HijackingOfNetworkConnection **X** 🕞 Ŧ No Regulations on Software Installation InadmissableTemperatureAndHumidity ÷ LightningImpact MalwareAffliction Notes for MalwareAffliction - Ø8x NetworkAttack New Topic Reply Delete Expand <Previous Displaying page 1 of 1 pages Next> PowerLoss Subject Author Туре Date Storm [http://www.w3.org/2000/01 Stefan Fenz AgreeDisagreeVote 09/15/2010 12:35:51 CEST SystematicTryingOutOfPasswords /rdf-schema#comment] Theft Rename Malware Affliction to Malware? Stefan Fenz Comment 09/15/2010 12:16:46 CEST UnauthorizedPhysicalAccess ÷ UnauthorizedUseOfTSystems

Collaboration benefits

- Share the knowledge maintenance effort with other trusted organizations
- Reduce the costs and increase the quality of knowledge management by decentralizing it to the relevant stakeholders
- Efficiently reuse collected knowledge in risk and compliance management activities (download functionality)
- Empower the organization to help itself and to reduce the need for costly external support

Next steps

- Establishment of a core user group in a certain domain (e.g., smart grid security)
- Definition of real-world requirements for the described knowledge sharing portal (done by the core group)
- Design and implementation of an extended prototype to address the requirements
- Attraction of additional users to join the initiative by demonstrating the business value which has been realized at the core group members.
- Goal: reach critical mass to enable significant distribution of the knowledge sharing initiative and to increase the return for each participant

ENISA and Policy Context

- WPK 1.1: Identifying evolving threats, risks and challenges
 - Collaborative tool for knowledge exchange
- WPK 3.3: Regular cooperation among NIS communities
- Collaborative European approach to Network and Information security (Council Resolution 18/12/2009)
 - Quality of information handling
 - Raise awareness, good practices, and guidance

fenz@xylem-technologies.com stefan.fenz@tuwien.ac.at